→ Расчет скорости движения воды самотеком. Гидравлический расчет безнапорных трубопроводов

Расчет скорости движения воды самотеком. Гидравлический расчет безнапорных трубопроводов

Задачи по гидравлическому расчету водоотводящих труб возникают как при проектировании, так и при строительстве и эксплуатации водоотводящих сетей. Основными случаями расчета водоотводящей сети при равномерном установившемся движении сточных вод являются следующие:

а) заданы диаметр, уклон и наполнение труб; требуется определить расход (пропускную способность) и скорость движения сточных вод;

б) заданы диаметр и наполнение труб, а также скорость движения сточных вод; требуется определить расход (пропускную способность) и уклон труб;

в) задан расход и требуется определить диаметр и уклон труб при скорости течения и наполнении, соответствующих требованиям ТКП 45-4.01-56–2012.

Последний вариант гидравлического расчета является наиболее распространенным в практике проектирования, но требует сопоставления стоимости труб и их прокладки, поскольку при уменьшении диаметров увеличивается объем земляных работ, так как для сохранения при этом пропускной способности надо увеличить скорость, следовательно, и уклон труб. Затем по заданному расходу устанавливаются наполнение и скорость движения сточных вод. Если при этом наполнение равно или близко к требуемому значению по ТКП 45-4.01-56–2012, то диаметр участка может считаться принятым. Если наполнение значительно отличается от максимально допускаемых значений, то диаметр при заниженном наполнении велик, а при завышенном наполнении мал. При завышенном наполнении труб можно или увеличить уклон, сохраняя диаметр, или увеличить диаметр, проведя технико-экономическое сравнение вариантов этого проектного решения. Одновременно производится проверка соответствия величин скоростей условиям незаиливаемости труб.

Необходимо иметь в виду, что увеличение уклона уменьшает наполнение труб при постоянном расходе, но увеличивает скорости, а уменьшение уклона увеличивает наполнение, но уменьшает скорости. Во всех случаях наполнение труб должно быть по возможности близким к допускаемому значению по ТКП 45-4.01-56–2012, а принимаемые уклоны – обеспечивать минимально возможные заглубления труб, минимально возможное количество перекачек и незаиливающие скорости.

Бытовая водоотводящая сеть рассчитывается на неполное заполнение труб. Это делается для того, чтобы обеспечить транспортирование плавающих веществ, удаление из сети вредных и взрывоопасных газов, а также для получения некоторого запаса в сечении труб, рассчитанного на неравномерное поступление сточных вод. Отношение высоты слоя воды (h) к диаметру трубы (d) называют ее наполнением. Частичное наполнение, соответствующее пропуску расчетного расхода, называется расчетным. Наполнение труб при самотечном режиме их работы нормируется ТКП 45-4.01-56–2012.



Расчетное наполнение трубопроводов в зависимости от диаметров труб должно приниматься не более:

Если наполнение труб диаметром 150–200 мм получается меньше расчетного, то участки таких трубопроводов не рассчитывают и скорость движения сточных вод в них не определяется.

Расчетное наполнение трубопроводов и каналов с поперечным сечением любой формы надлежит принимать не более 0,7 высоты, а каналов прямоугольного поперечного сечения – не более 0,75 высоты. Для трубопроводов дождевой сети и общесплавных коллекторов полураздельной системы водоотведения следует принимать полное расчетное наполнение.

Расчет водоотводящей сети выполняют, исходя из средней скорости. Средняя скорость потока получается как частное от деления расхода (q) на площадь живого сечения (w). Под самоочищающей скоростью при максимальном расчетном расходе понимают такую минимальную среднюю скорость потока, при которой взвешенные частицы из потока не выпадают. При расчетах водоотводящей сети назначают такую скорость потока, которая при расчетном наполнении будет не меньше, чем минимальная самоочичающая. При расчетном наполнении труб следует принимать следующие скорости движения потока (м/с) для труб с диаметром:

Для бытовых сточных вод с крупностью взвеси в 1 мм минимально допустимая скорость течения, при которой трубы не заиливаются, может определяться по формуле, предложенной Н. Ф. Федоровым:



где ν min – незаиливающая скорость, м/с;

R – гидравличиский радиус, м;

n = 0,35 + 0,5R – показатель степени корня.

Наименьшую расчетную скорость движения осветленных или биологически очищенных сточных вод в открытых лотках и самотечных трубопроводах допускается принимать 0,4 м/с.

Максимальная расчетная скорость движения сточных вод не должна быть опасной для механической прочности труб, по которым транспортируются вместе со сточными водами твердые вещества (галька, песок, обломки металла и т. д.). В соответствии с требованиями ТКП 45-4.01-56–2012 максимальная расчетная скорость движения сточных вод в металлических трубах должна быть не более 8 м/с, а в неметаллических – 4 м/с. Для дождевой сети – соответственно 10 и 7 м/с.

При расчетном наполнении для всех систем водоотведения в соответствии с ТКП 45-4.01-56–2012 рекомендуется принимать следующие наименьшие уклоны:

В зависимости от местных условий при неблагоприятном рельефе местности для отдельных коллекторов и участков уличной сети для труб диаметром 200 мм допускается уклон 0,005.

Наименьшие уклоны труб бытовой водоотводящей сети принимаются для труб диаметром: 150 мм – 0,008; 200 мм – 0,005; 250 мм и более – определяются гидравлическим расчетом в зависимости от допускаемых минимальных скоростей.

Уклоны менее 0,0005 не допускаются в связи с усилением засоряемости сетей и, следовательно, удорожанием эксплуатации их, а также в связи с трудностями выдерживания такого уклона при строительстве сетей.

Наименьшим уклоном называется уклон, обеспечивающий при расчетном заполнении незаиливающую скорость. Если наполнение труб диаметром 150 и 200 мм на отдельных участках, уложенных с нормативным уклоном, получается меньше расчетного, то такие участки считаются безрасчетными и скорости течения в них не определяются, а уклоны принимаются соответственно 0,008 и 0,005. Для ориентировочного назначения наименьшего уклона иногда используют формулу

(4.5)

Важнейшим этапом проектирования водоотводящей сети является гидравлический расчет, в итоге которого строится продольный профиль коллекторов. Продольный профиль представляет собой вертикальный разрез – разверстку верхнего слоя земли с запроектированным трубопроводом в направлении движения воды. Гидравлический расчет начинают с диктующих точек – начальных, низкорасположенных и наиболее удаленных точек схемы водоотведения. При построении продольного профиля от диктующих точек заглубление трубопровода получается наибольшим. Поэтому обеспечивается самотечное присоединение других более благоприятно расположенных всех боковых веток трубопроводов к проектируемому коллектору. Участок от диктующей точки до коллектора принято называть диктующей веткой. При построении продольного профиля трубопровода решается вопрос о соединении труб по высоте. В инженерной практике применяются два способа соединения труб в расчетной точке: «шелыга в шелыгу» и «по уровням воды». Опыт эксплуатации показывает, что для объектов водоотведения, имеющих равнинный характер со слабо выраженным рельефом местности, предпочтительны соединения труб одинакового диаметра «по уровням воды», а разного диаметра – «шелыга в шелыгу».

Выберем сечение 1-1 по свободной поверхности жидкости в резервуаре А, сечение 2-2 - по свободной поверхности жидкости в резервуаре В (рис. 7). Плоскость сравнения совместим с сечением 2-2.

Рисунок 7 - Схема к расчету диаметра самотечного трубопровода

Составим уравнение Бернулли для сечений 1-1 и 2-2:

В данном случае:

Так как уровни в резервуарах А и В постоянны, то скоростные напоры и равны нулю.

Подставив все значения в уравнение Бернулли (7.1), получим:

Потери напора:

При установившемся режиме уровни в резервуарах постоянны, тогда расход жидкости через самотечный трубопровод равен. Следовательно, средняя скорость жидкости в самотечном трубопроводе:

Подставляя выражение (7.3) с учетом (7.4) в (7.2), получим:

Решение уравнения (7.5) выполним графоаналитическим методом. Задаваясь значением диаметра самотечного трубопровода, построим график зависимости потребного напора

Число Рейнольдса:

Следовательно, режим течения турбулентный. Тогда коэффициент потерь на трение по длине определяем по формуле Альтшуля:

где: - шероховатость чугунных (бывших в употреблении) труб.

Вычислим по формуле (7.5) величину потребного напора для пропуска расхода при значении диаметра самотечного трубопровода:

Так как полученное значение, то последующие значения диаметра нужно уменьшать.

Проведем аналогичные расчеты для ряда других значений диаметра. Результаты расчетов сведем в таблицу 2.

Таблица 2 - Результаты расчета потребного напора

По данным таблицы 2 строим график зависимости (рис. 8) и по значению определяем диаметр самотечного трубопровода.


Рисунок 8 - График зависимости

По графику получаем.

ПОСТРОЕНИЕ ХАРАКТЕРИСТИКИ СЕТИ

При установившемся режиме работы установки, когда расход в системе трубопровода не изменяется со временем, развиваемый насосом напор равен потребному напору установки

Тогда, согласно формуле (4.2), потребный напор установки:

Давление сети:

Построим характеристику сети, используя зависимости (8.1) и (8.2) и методику определения потерь напора, изложенную в п.2.

Зададимся расходом.

Определим средние скорости, режим течения и коэффициенты сопротивления трения для каждого участка трубопровода.

Для трубопровода всасывающей линии диаметром:

число Рейнольдса:

Следовательно, во всасывающей линии режим течения турбулентный.

Для трубопровода диаметром:

средняя скорость движения жидкости:

число Рейнольдса:

Для трубопровода диаметром:

средняя скорость движения жидкости:

число Рейнольдса:

Следовательно, в трубопроводе диаметром режим течения турбулентный.

Для трубопровода диаметром:

средняя скорость движения жидкости:

число Рейнольдса:

Следовательно, в трубопроводе диаметром режим течения турбулентный.

Потери напора во всасывающей линии

где: - потери напора на трение по длине;

Местные потери напора;

и - соответственно коэффициент сопротивления трения и сумма коэффициентов местных сопротивлений во всасывающей линии.

Определим коэффициент гидравлического сопротивления по формуле Альтшуля:

Для всасывающей линии местные сопротивления:

всасывающая коробка с обратным клапаном с коэффициентом сопротивления;

задвижка (при полном ее открытии).

Получаем:

Вычислим потери напора во всасывающей линии:

Аналогичным образом определим потери напора в нагнетательной линии:

Так как режим течения в нагнетательной линии на всех участках турбулентный, а область гидравлического сопротивления переходная, то коэффициенты сопротивления трения определим по формуле Альтшуля:

Местные сопротивления нагнетательной линии:

два поворотных колена с коэффициентом сопротивления

регулировочный вентиль с коэффициентом сопротивления

поворотное колено с коэффициентом сопротивления

на участке трубопровода диаметром:

поворотное колено с коэффициентом сопротивления

на участке трубопровода диаметром:

поворотное колено с коэффициентом сопротивления

расходомер Вентури с коэффициентом сопротивления

Вычислим потери напора в нагнетательной линии:

Общие потери напора в трубопроводе:


Потребный напор установки:

Давление сети:

Проведем вычисления для других значений расхода. Результаты вычислений сведем в таблицу 3.

напор трубопровод насосный резервуар

Таблица 3 - Результаты расчетов для построения характеристики сети

К безнапорным (самотечным) трубопроводам относятся канали­зационные трубы, водосточные каналы (ливнеспуски), самотечные нефтепроводные и водопроводные трубы и т.д.

Наиболее распространенными формами сечений безнапорных трубопроводов являются: круглое (рис.5), овоидальное (рис.5) и лотковое (рис.5). Эти сечения характеризуются интересной гидравлической особенностью: наибольший расход и наибольшая скорость в них имеют место не при полном, а лишь при частичном наполнении.

Объясняется это тем, что при заполнении верхней части подобных сечений смоченный периметр растет быстрее, чем площадь, и поэтому начинает уменьшаться гидравлический радиус, что приводит одновременно к уменьшению скорости и расхода.

Гидравлические расчеты безнапорных трубопроводов выполняются аналогично расчетам открытых каналов, что естественно, поскольку безнапорный трубопровод представляет собой по существу также открытый канал; отличием трубопроводов от каналов в гидравлическом смысле является только отмеченное выше уменьшение гидравлического радиуса трубопроводов при заполнении его верхней части, в то время как гидравлический радиус каналом все время возрастает с увеличением наполнения.

Рис.6 Рис.7

Для упрощения расчетов значения характеристик трубопроводом (площади сечения, гидравлического радиуса и величин и зависящие от глубины наполнения, могут быть вычислены для определенных форм сечения заранее.

Если обозначить через W 0 и значения модуля скорости и модуля расхода при полном наполнении h 0 трубопровода, а теми же буквами без индекса –их значения при некотором частичном наполнении h, можно вычислить значения отношений

в зависимости от ; получающиеся при этом зависимости для трубопроводов круглого, оваидального и лоткового сечений представлены в виде графиков на рис.6, 7, 8. Пользуясь этими графиками, значения скорости и расхода Q при частичном наполнении можно находить по формулам

8.5. Безнапорное движение при ламинарном режиме

На практике, например при сливе весьма вязких нефтей и нефтепродуктов и их течении в открытых лотках и самотечных трубах, при решении некоторых задач в области химического и нефтезаводского аппаратостроения, иногда приходится встречаться с ламинарным безнапорным движением жидкости.

В этом случае оказывается возможным определить теоретическим путем потери напора (подобно тому, как при ламинарном движении в напорных трубах) и получать расчетные зависимости для расхода. Не приводя здесь соответствующих решений, математически обычно весьма сложных и громоздких, ограничимся лишь сводкой некоторых расчетных формул для каналов наиболее часто применяемых форм поперечных сечении. По И.А.Чарному, для канала прямоугольного сечения при глубине потока h и ширине b расход жидкости может быть подсчитан по формуле


где i –уклон дна канала; g –ускорение силы тяжести; v –кинематическая вязкость жидкости.

Если глубина потока весьма мала по сравнению с шириной, то

Для канала трапецеидальной формы гидравлически наивыгоднейшего сечения с углом

Для полукруглого канала

→ Системы водоотведения

Гидравлический расчет самотечных трубопроводов


Расчет самотечных трубопроводов заключается в определении их диаметра (или размеров коллектора, если он имеет не круглую форму), уклона и параметров их работы – наполнения и скорости. Обычно предварительно определяется расход, который является исходным для расчета. Расчет трубопроводов – не только гидравлическая задача. Полученные результаты должны удовлетворять технологическим и экономическим требованиям, о которых будет сказано ниже.

В целях упрощения гидравлических расчетов водоотводящих сетей движение воды в них условно принимается установившимся и равномерным. По поводу расчета самотечных трубопроводов существует две точки зрения.

По формуле (2.7) коэффициент Л (следовательно, и коэффициент С) зависят не только от относительной шероховатости, но и от числа Рейнольдса. Эта формула справедлива для всех трех областей турбулентного режима движения жидкости: областей гладкого, вполне шероховатого трения и переходной области между ними. Исследования показали, что трубопроводы водоотводящих сетей работают в области вполне шероховатого трения. Для возможных условий проектирования расчеты по формулам (2.1) – (2.3) и (2.6) – (2.7) дают практически одинаковые результаты.

Известно, что максимальный расход воды в трубах наблюдается при наполнении h/d= 0,95. Поэтому наполнение, большее этого значения, принимать нецелесообразно. Однако, расчетные наполнения рекомендуется принимать даже меньше этого значения по следующим двум причинам. Во-первых, при определении расчетных расходов не учитывается колебание расходов в пределах часа суток, когда может наблюдаться максимальный расход. А это колебание может быть и в меньшую, и в большую стороны. Во-вторых, вследствие неравномерности движения воды, наполнение в трубопроводе в отдельных местах может быть больше расчетного. В целях исключения подтопления трубопроводов при расчетных условиях наполнение в трубопроводах бытовой водоотводящей сети рекомендуется принимать не более 0,8.

В трубопроводах дождевых сетей (водостоках) полных раздельных систем водоотведения, а также в общесплавных трубопроводах и общесплавных коллекторах полураздельных систем водоотведения при расчетных условиях наполнение рекомендуется принимать равным 1, т. е. полным. Это объясняется тем, что расчетные условия в этих трубопроводах наблюдаются весьма редко – 1 раз в 0,25-10 лет. Таким образом, значительную часть времени эти трубопроводы также будут работать при частичном наполнении.

Содержащиеся в сточных водах нерастворенные примеси способны выпадать в осадок, уменьшать сечение трубопроводов и вызывать их полное засорение. Наиболее сложно транспортируются потоком воды минеральные примеси, обладающие большой плотностью. Транспортирование нерастворенных примесей потоком является следствием его турбулентности. При определенных малых скоростях взвешенные вещества осаждаются на дно и образуют плотный слой осадка. При достижении определенной скорости осадок приходит в движение, образуя слой осадка, имеющий форму непрерывных гряд, которые движутся в направлении потока, но с меньшей скоростью (рис. 2.4). Скорость, соответствующая началу движения осадка, называется размывающей. При дальнейшем увеличении скорости и достижении определенного значения весь осадок взвешивается турбулентным потоком, а трубопровод самоочищается. Скорость, соответствующая этому моменту, называется самоочищающей. Известно также понятие критической скорости. Эта скорость – соответствующая началу осаждения примесей (при уменьшении скорости) или полного самоочищения (при увеличении скорости). Расход сточных вод в водоотводящих сетях изменяется в широких пределах от определенного минимального до известного максимального, который принимается за расчетный. Обеспечить возможность транспортирования всех примесей потоком при любом расходе, в том числе и минимальном, не представляется возможным, так как в этом случае потребовалось бы прокладывать трубопроводы с большими уклонами, а это привело бы к их значительным заглублениям. В настоящее время расчет трубопроводов производится на условии поддержания труб в чистом состоянии при максимальном расчетном расходе. Таком образом, при минимальных расходах в трубопроводах допускаются отложения, но при достижении расчетного расхода трубопроводы должны самоочищаться. Поэтому при расчете широко используется понятие самоочищающая скорость. Это минимальная скорость, которая должна обеспечиваться в водоотводящих сетях при расчетном расходе.

Рис. 2.4. Схема непрерывного передвижения отложений в водоотводящей сети

Профессоры Н. Ф. Федоров и А. М. Курганов минимальную скорость, которую необходимо соблюдать в трубопроводах из условий самоочищения, называют незаиляющей.

Формула (2.11) учитывает крупность песка, который может содержаться в сточной воде. Изменение крупности песка может быть обусловлено видом сточных вод (бытовые, дождевые, производственные), совершенством покрытий проездов, особенностями их содержания и др.

Самоочищающая скорость зависит и от коэффициента шероховатости п, так как важным источником турбулентности потока является шероховатость русла. Если в трубопроводах имеется осадок в виде гряд, то коэффициент и~0,025. Если трубопровод чист, то л~0,014. По формуле (2.11) самоочищающая скорость в первом случае меньше, чем во втором. Первый случай определяет условия самоочищения, а второй – критические условия (условия, исключающие осаждение взвешенных веществ). Формула (2.11) позволяет определять как самоочищающую скорость, так и критическую. Они различны, так как различны шероховатости русел. Но условия турбулентности в описанных двух случаях практически одинаковы.

Содержащиеся в сточных водах песок и другие минеральные примеси являются абразивными материалами, истирающими стенки трубопроводов в результате транспортирования жидкости. При этом интенсивность истирания пропорциональна скорости потока, движущегося в трубе. Поэтому на основании многолетнего опыта эксплуатации водоотводящих сетей установлены максимально допустимые скорости, равные 4 м/с – для неметаллических труб и 8 м/с – для металлических.

Расчет трубопроводов по формулам (2.1) – (2.4) или другим чрезвычайно сложен. Методы решения различных задач по расчету трубопроводов изложены в специальной литературе.

При проектировании водоотводящих сетей требуется выполнять й расчеты большого числа отдельных участков трубопроводов с различными условиями проектирования. Их расчет производится путем применения тех или иных упрощающих приемов, при которых используются разработанные таблицы, графики, номограммы, различные обобщенные параметры и др.

В настоящее время для расчета самотечных трубопроводов используют различные таблицы, к числу которых относятся таблицы А. А. Луки-1 ных и Н. А. Лукиных (Таблицы для гидравлического расчета канализационных сетей и дюкеров по формуле акад. Н. Н. Павловского. – М.: Стройиздат, 1987) и Н. Ф. Федорова и Л. Е. Волкова (Гидравлический расчет канализационных сетей. -Л.: Стройиздат, 1968). Первые составлены по формулам (2.1) – (2.4), вторые -по формулам (2.6) и (2.7).

Значения расхода сточных вод д и скорости их движения v в трубах d=2Q0 мм

В табл. 2.4 приведена краткая выдержка из первых таблиц для трубопровода диаметром 200 мм. Таблицы содержат значения расхода и скорости при различных наполнениях от 0,05 до 1,0 для всех возможных в инженерной практике диаметров и уклонов труб.

При проектировании водоотводящих сетей предварительно определяют расход. Уклон трубопровода принимают с учетом уклона поверхности земли и руководствуясь экономическими соображениями (минимальными объемом земляных работ и стоимости строительства). Расчет трубопроводов по описанным таблицам сводится к подбору диаметра трубопровода, обеспечивающего пропуск расхода при наполнении, соответствующем самоочищающей скорости.

Этот расчет весьма прост и удобен. Однако для него требуются таблицы большого объема, которые издаются отдельными книгами. Они Должны быть «под рукой» у каждого проектировщика. В то же время, изданные таблицы не охватывают всех возможных в инженерной практике Диаметров и уклонов трубопроводов и параметров их работы.

Аналогично ведется расчет по графикам и номограммам. Он требуют кропотливой работы. В инженерной практике ими пользуются реже.

Расчёт диаметров трубопроводов коммуникаций водозабора производится по значениям допускаемых скоростей в условиях нормального режима работы водозабора. Для самотечных труб, согласно скорость должна быть в пределах от 1 до 1,5. Диаметр самотечных труб принимаем по таблицам Шевелёва.

Принимаем две самотечные линии. Принимаем 700 мм =1,23 м/с.

Определение потерь в самотечных линиях, возникающих в процессе эксплуатации:

, где

L– длина самотечной линии. Длина самотечной линии определяется из профиля дна реки. Это расстояние по горизонтали от наружной стены водозабора (принимается на расстоянии 5м от уреза воды при ВУВ) до места расположения оголовка,L=43,5 м.

V – скорость движения потока воды в трубе,
=1,23 м/с;

=2,45 м/с;

 - сумма коэффициентов местных сопротивлений, принимаем по :

= выхврезервуар=

3*0,25+0,1+0,97+1,0=3,57м

Нормальный режим:

0,47 м

Аварийный режим:

Q ав. =Q расч =961,22л/с;

1,65 м

7. Система промывки кассетных фИльтров, оголовков и самотечных труб

Рис.5. Система промывки кассетных фильтров, оголовков и самотечных труб.

При достижении перепада уровней в реке и в одной или обеих камерах колодца, критической величины, необходимо приступить к промывке фильтрующих кассет и самотечных труб. Разность уровней определяется по показаниям датчиков. Вначале производится импульсная промывка фильтров одного из оголовков. Если после 3-4 импульсных промывок фильтров и самотечных трубопроводов, перепад уровней не восстановлен до нормальной величины, то приступают к напорной обратной промывке. Трубопроводы подводящих воду на промывку самотечных линий и фильтров подключается в камере переключения к напорному водоводу. Диаметр подводящих трубопроводов определяется следующим образом:

Скорость воды при обратной промывке должна удовлетворять следующему условию:

,

где - скорость воды в промывной линии, принимаем1,5 м/с;

- скорость воды в самотечной линии, м/с

При этом, расход воды на промывку самотечной линии определяется по формуле:

,

где - диаметр самотечной линии, м

м/с

м 3 /с

Согласно принимаем диаметр труб подачи промывной воды при
4м/с диаметр
мм.

Расчёт импульсного промыва

Рис. 6. Расчёт импульсного промыва.

Расчет импульсного промыва рыбозащитных кассет затопленных водоприемников состоит в определении максимальной скорости течения воды в самотечном водоводе при промыве. По этой скорости можно косвенно судить об эффективности его применения (например, в сопоставлении с возможно достижимой скоростью течения при промыве обратным током воды). Максимальную скорость течения воды в самотечном водоводе
м/с, при некоторых принятых значениях, L, D и d определяют по формуле

Где и- полуамплитуды колебания уровня жидкости в вакуумстояке, м;

, - продолжительность первого полупериода колебания уровня жидкости в вакуумстояке

где F и ω - площади соответственно живого сечения вакуумстояка и самотечного водовода.
приF=ω

L-длинна самотечной линии

Ѳ- характеристика основного гидравлического сопротивления определяется по формуле:

При этом коэффициент ѱ находят по формуле:

Где, λ - коэффициент гидравлического трения;

L и Dс - длина и диаметр самотечного водовода, м;

∑ζ - сумма коэффициентов местных сопротивлений при движении воды от водоисточника к включительно.


h– потери напора в фильтрующей кассете,h=0.3;

V– скорость воды в фильтрующей кассете, определяется по формуле:


,м/с

Где,
- скорость втекания воды в кассету

Ρ=50%- пористость загрузки кассеты

м/с

Характеристику дополнительного сопротивления находят по формуле

где D u d - диаметр соответственно вакуумстояка и клапана для впуска воздуха. D=700 мм;d=100 мм;

Определяем - высота подъёма воды в вакуумном стояке

принимается 3-8 м

По графику расчётов импульсной промывки определяем

;
м/с

 

 

Это интересно: